Targeting excited states with state-specific
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Abstract

Excited states can be studied using a variety of methods, each with its own advantages and drawbacks. Coupled-cluster (CC) theory is one such approach that provides accurate
results at high order, overcoming the lack of size extensivity of configuration-interaction (Cl) methods. The usual way of targeting excited states via the equation-of-motion (EOM)
or linear-response (LR) formalism has proven its effectiveness.|1] However, high-order CC methods come with a high computational cost that limits the system size that can be
studied. Additionally, lower-order CC methods may encounter difficulties in certain cases. Furthermore, EOM-CC and LR-CC methods compute excited states based on the results of
the ground-state calculation, which introduces a bias toward the latter. To address these challenges, we explore state-specific CC approaches to study excited states. Specifically,
we rely on CCSD and two-determinant CCSD (TD-CCSD) that we have implemented in the open-source software QUANTUM PACKAGE, which is freely accessible on github at

https://quantumpackage.github.io/qp2.

Single-reference coupled cluster

Single-reference CC methods rely on an exponential ansatz of the wave function
Wee) = e |D) (1)

with |®) a reference Slater determinant, often chosen as the Hartree-Fock determinant,

and T an excitation operator.
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\ New amplitudes:

t(p) = t(p) — R(p)/D(p)
Targeting excited states

For excited states, the usual EOM-CC approach builds H = e—TﬁNeT and diagonalizes
it in a Cl basis. A different approach consists of using a non-Aufbau determinant as a
reference to directly target a given excited state.
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Double excitations
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(a) Closed-shell ground state

While EOM-CCSD is not adequate for doubly-excited states, ACCSD can circumvent
this problem by performing state—speciﬁc calculations.|2, 3]
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(b) Closed-shell doubly-excited state
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Figure 2. Error in excitation energy for double excitations (aug-cc-pVDZ).

Doublet-doublet transitions
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(a) Doublet ground state
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(b) Doublet excited state

The same strategy can be applied to doublet-doublet transitions as both ground and
excited states are single references.
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Figure 4. Error in excitation energy for doublet-doublet transitions computed at the ACCSD and
EOM-CCSD levels (aug-cc-pVDZ) using ground-state ROHF orbitals.
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Multi-reference coupled cluster

Multi-reference coupled cluster (MRCC) seeks to find a wave operator € such that
W) = Q|0 (2)

with [Uy) = > ;¢ |®r). The simplest MRCC scheme is TD-CC that considers an
incomplete active space with two open-shell determinants. |4, 5, 6]
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Figure 5. Determinants in TD-CC model wave function, |¥y) = % (|®4) + |Pp))

In this case, one can use the wave operator proposed by Jeziorski and Monkhorst
Q=3"eT|d,XP/] (3)
I

with reference-dependent amplitudes /T'.[7] The resulting wave functions have the

form
1

V) = NG (eAT Da) €T ©p)) (4)

and can be used to describe the singlet and triplet states.
spin-flip(|®4)) = BT = spin-flip(47).

Note that |®p) =

®4), truncation of T
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Amplitude equations:
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—Yrean ((ule|®r) (Pr|Hye | Da)
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Singly-excited states

Thence, TD-CC can be used to compute transitions between ground and singly-excited
states (singlets or triplets).|8]
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Figure 6. Error in excitation energy for singlet-singlet transitions computed at the TD-CCSD and
EOM-CCSD levels (aug-cc-pVDZ) using ground-state RHF orbitals.
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