A selected configuration interaction study of ground- and excited-state electric dipole moments

Yann Damour¹

Supervisors: Pierre-François Loos¹, Anthony Scemama¹ and Fábris Kossoski¹

¹Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

Introduction

PTEROSOR Team

Usefulness of electric dipole moments

Electric dipole moment

$$ec{\mu} = \sum_{i}^{N} q_i ec{r_i}$$

(1)

Usefulness of electric dipole moments

Electric dipole moment

$$\vec{\mu} = \sum_{i}^{N} q_{i} \vec{r_{i}}$$

Experimental chemistry

- Spectroscopy
- Identification of the structure/isomer of a molecule

(1)

Usefulness of electric dipole moments

Electric dipole moment

$$\vec{\mu} = \sum_{i}^{N} q_{i} \vec{r_{i}}$$

Experimental chemistry

- Spectroscopy
- Identification of the structure/isomer of a molecule

Computational chemistry

- "Theoretical" spectroscopy
- Descriptor of the quality of the electronic density (Hait et al. Phys. Chem. Chem. Phys. 20, 19800 (2018))

(1)

Expectation value

$$oldsymbol{\mu} = -\sum_{i}^{\mathsf{Nelec}} raket{\Psi|oldsymbol{r}_i|\Psi} + \sum_{A}^{\mathsf{Nnucl}} Z_A oldsymbol{R}_A$$

(2)

Expectation value

$$m{\mu} = -\sum_{i}^{\mathsf{Nelec}} raket{\Psi|m{r}_i|\Psi} + \sum_{A}^{\mathsf{Nnucl}} Z_A m{R}_A$$

Derivative of the energy wrt an external electric field $\ensuremath{\mathcal{F}}$

$$\boldsymbol{\mu} = -\left.\frac{\mathrm{d}\boldsymbol{E}(\boldsymbol{\mathcal{F}})}{\mathrm{d}\boldsymbol{\mathcal{F}}}\right|_{\boldsymbol{\mathcal{F}}=0} + \sum_{A}^{N\mathrm{nucl}} Z_{A}\boldsymbol{R}_{A}$$
(3)

(2)

Expectation value

$$\boldsymbol{\mu} = -\sum_{i}^{\text{Nelec}} \langle \Psi | \boldsymbol{r}_{i} | \Psi \rangle + \sum_{A}^{\text{Nnucl}} Z_{A} \boldsymbol{R}_{A}$$
(2)

Derivative of the energy wrt an external electric field ${\cal F}$

$$\boldsymbol{\mu} = -\left.\frac{\mathrm{d}\boldsymbol{E}(\boldsymbol{\mathcal{F}})}{\mathrm{d}\boldsymbol{\mathcal{F}}}\right|_{\boldsymbol{\mathcal{F}}=0} + \sum_{A}^{N\mathrm{nucl}} Z_{A}\boldsymbol{R}_{A}$$
(3)

 \Rightarrow Not equal unless Ψ is the exact solution of the Schrödinger equation (in a given basis set).

Expectation value

$$\boldsymbol{\mu} = -\sum_{i}^{\mathsf{Nelec}} \langle \Psi | \boldsymbol{r}_{i} | \Psi \rangle + \sum_{A}^{\mathsf{Nnucl}} Z_{A} \boldsymbol{R}_{A}$$
(2)

Derivative of the energy wrt an external electric field ${\cal F}$

$$\boldsymbol{\mu} = -\left. \frac{\mathrm{d}\boldsymbol{E}(\boldsymbol{\mathcal{F}})}{\mathrm{d}\boldsymbol{\mathcal{F}}} \right|_{\boldsymbol{\mathcal{F}}=0} + \sum_{A}^{N\mathrm{nucl}} Z_{A}\boldsymbol{R}_{A}$$
(3)

 \Rightarrow Not equal unless Ψ is the exact solution of the Schrödinger equation (in a given basis set).

Scillator strengths \propto transition intensities.

Aiming for the exact solution (0/2)

Aiming for the exact solution (0/2)

Aiming for the exact solution (0/2)

Introduction

Aiming for the exact solution (1/2)

Aiming for the exact solution (2/2)

 $^2\text{A}.$ Chrayteh et al. J. Chem. Theory Comput. 2021, 17.1, 416–438.

Introduction

Aiming for the exact solution (2/2)

 H_2S , first excited state with LR-CCSD.²

²A. Chrayteh et al. J. Chem. Theory Comput. 2021, 17.1, 416–438.

Another road to FCI ?

³P.-F.Loos et al. J. Chem. Theory Comput. 2018, 14, 4360–4379.

CIPSI

CIPSI

- Configuration Interaction using a Perturbative Selection made Iteratively⁴
- Selection of the "important" electronic configurations (Slater determinants)

⁴B. Huron et al. J. Chem. Phys. 1973, 58.12, 5745–5759

CIPSI

CIPSI

- Configuration Interaction using a Perturbative Selection made Iteratively⁴
- Selection of the "important" electronic configurations (Slater determinants)

https://quantumpackage.github.io/qp2/

⁴B. Huron et al. J. Chem. Phys. 1973, 58.12, 5745–5759

CIPSI

Benzene / $cc-pVDZ^5$

FCI \rightarrow (30e/108o) = 8 \times 10³⁵ determinants

⁵P.-F. Loos et al. J. Chem. Phys. 153 (2020), 176101

Benzene / cc-pVDZ⁵

FCI \rightarrow (30e/108o) = 8 \times 10³⁵ determinants

CIPSI \rightarrow 2 × 10⁸ determinants, 150 000 CPU hours \Rightarrow 1 × 10⁻³ E_h accuracy

CIPSI

⁵P.-F. Loos et al. J. Chem. Phys. 153 (2020), 176101

Benzene / cc-pVDZ⁵

FCI \rightarrow (30e/108o) = 8 \times 10³⁵ determinants

 \blacksquare CIPSI $\rightarrow 2 \times 10^8$ determinants, 150 000 CPU hours $\Rightarrow 1 \times 10^{-3} \, E_h$ accuracy

⁵P.-F. Loos et al. J. Chem. Phys. 153 (2020), 176101

Benzene / cc-pVDZ⁵

FCI \rightarrow (30e/108o) = 8 \times 10³⁵ determinants

CIPSI \rightarrow 2 × 10⁸ determinants, 150 000 CPU hours \Rightarrow 1 × 10⁻³ E_h accuracy

What about dipole moments? ground state of BF/aug-cc-pVDZ

What about dipole moments? ground state of BF/aug-cc-pVDZ

CIPSI

Yann Damour (LCPQ)

SCI dipole moments

Extrapolation

Yann Damour (LCPQ)

Extrapolation

Results

Study

CC3/aug-cc-pVTZ geometries ³					
Boron monohydride	$\mathbf{B}-\mathbf{H}$	$^{1}\Sigma^{+},$ $^{1}\Pi$	Carbon dioxide	$\mathbf{C} = \mathbf{O}$	$^{1}\Sigma^{+}, ^{1}\Pi$
Hydrochloric acid	$\mathrm{Cl}-\mathrm{H}$	$^{1}\Sigma^{+},$ $^{1}\Pi$	Formaldehyde	$\mathrm{H}_{2}\mathrm{C}{=}\mathrm{O}$	${}^{1}A_{1}, {}^{1}A_{2}$
Water	H_O_H	${}^{1}A_{1}, {}^{1}B_{1}, {}^{1}A_{2}, {}^{1}A_{1}$	Thioformaldehyde	$H_2C\!=\!S$	${}^{1}A_{1}, {}^{1}A_{2}$
Hydrogen sulfide	${\rm H^{\sim S_{h}}}$	${}^{1}A_{1}, {}^{1}A_{2}, {}^{1}B_{1}$	Nitroxyl	O ^{≈^N∖} H	${}^{1}A', {}^{1}A''$
Boron monofluoride	$\mathbf{B}\!-\!\mathbf{F}$	${}^{1}A_{1},{}^{1}\Pi$	Fluorocarbene	${\rm F}^{\rm C_{H}}$	$^{1}A', ^{1}A''$

 $^3\text{A}.$ Chrayteh et al. J. Chem. Theory Comput. 17 (2021), 416-438

Yann Damour (LCPQ)

Results

Results

Few numbers

H_2S

- aug-cc-pVDZ (8e,40o): few hours $< 1 \mbox{ mD}$
- aug-cc-pVQZ (8e,171o): few weeks \sim 10 mD

H₂CS

- aug-cc-pVDZ (12e,62o): one week $\sim 1 \text{ mD}$
- aug-cc-pVTZ (12e,136o): few weeks \sim few mD

Configuration (Hilbert) space

- (24e,24o) $\sim 7 \times 10^{12}$
- (8e,171o) $\sim 1 \times 10^{15}$
- (12e,136o) $\sim 6 imes 10^{19}$

Results

Results

Few numbers

H_2S

- ${\scriptstyle \bullet} \,$ aug-cc-pVDZ (8e,40o): few hours $< 1 \mbox{ mD}$
- aug-cc-pVQZ (8e,171o): few weeks \sim 10 mD

H₂CS

- aug-cc-pVDZ (12e,62o): one week \sim 1 mD
- aug-cc-pVTZ (12e,136o): few weeks \sim few mD

Configuration (Hilbert) space

• (24e,24o) $\sim 7 \times 10^{12}$

• (8e,171o)
$$\sim 1 imes 10^{15}$$

• (12e,136o) $\sim 6 imes 10^{19}$

CC & CIPSI / aug-cc-pVDZ

Conclusion

Acknowledgments

Pierre-François Loos

Anthony Scemama

Fábris Kossoski

Denis Jacquemin

Michel Caffarel

Raúl Quintero-Monsebaiz

Emmanuel Giner

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No. 863481.