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Resonances

Electronic spectrum of molecular systems:
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Resonances

Metastable states embedded in the continuum that
can decay by losing one electron.
ex: N2

– → N2 + e–

Temporary anions

� Electron attachment on a molecule:
A + e– → A–

� Photoexcitation of a bound anion:
A– + ~ν → A*–

Applications

� DNA damage induced by ionizing radiation

� Radiosensitizers for cancer

� Chemistry of interstellar medium

� ...
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Bound vs Unbound

Resonance

� ĤΨ = EΨ (need to account for the
continuum)

� Complex-valued energy:

E = ER − i Γ/2

Energy

Resonance position

Resonance width

1/Γ is proportional to the resonance lifetime

� Usual quantum chemistry methods are not
made for resonances.

Bound state and resonance

S. Klaiman and I. Gilary, in Advances in Quantum Chemistry, Vol. 63, 1–31 (2012)

Solutions

� Scattering methods

� Adaptation of quantum chemistry methods

Complex-absorbing potential, ...
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Complex-Absorbing Potential (CAP)

CAP

� To adapt quantum chemistry methods

� Absorbs the tail of Ψ

Ĥ(η) = T̂ + V̂ − iη Ŵ , η > 0

CAP Hamiltonian Absorbing potential

η′ < η′′ < η′′′

Complete basis set

ER , Γ from E (η) when η → 0+

Finite basis set

⇒ Optimal value ηopt

ER = Re[E (ηopt)] Γ = −2 Im[E (ηopt)]
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CAP Hamiltonian Absorbing potential

η′ < η′′ < η′′′

Complete basis set

ER , Γ from E (η) when η → 0+

Finite basis set

⇒ Optimal value ηopt

ER = Re[E (ηopt)] Γ = −2 Im[E (ηopt)]

Yann Damour (LCPQ) June 26, 2024 4 / 10



Complex-Absorbing Potential (CAP)

CAP

� To adapt quantum chemistry methods

� Absorbs the tail of Ψ
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CAP-CIPSI
Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI)

� Accurately approach the FCI energy of usual bound states

� Required to benchmark methods

� CIPSI adaptation to do CAP-CIPSI

� Relatively small systems

CAP-CIPSI

� Iterative algorithm

� At each iteration:

The size of Ψ doubles
Energy E(η)
Second-order energy EPT2(η)

� At the FCI, EPT2(η) = 0

For a sufficiently large Ψ

� EFCI(η) ≈ E (η) + EPT2(η)

� Evolution of E (η) as a function of EPT2(η) to
estimate EFCI(η)
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Application

N2
–

� CAP-EA-EOM-CCSD / aug-cc-pVTZ+3s3p3da

� ηopt from their work

aZuev et al. , J. Chem. Phys. 141, 024102 (2014)
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Application
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Results

N2
– /aug-cc-pVTZ+3s3p3d

Method ER (eV) Γ (eV)
Experimenta 2.316 0.414
CAP-EA-EOM-CCSDb 2.487 0.417
CAP-CIPSI 2.45 0.39

aBerman et al., Phys. Rev. A 28, 1363 (1983)
bZuev et al. , J. Chem. Phys. 141, 024102 (2014)

N2
– /aug-cc-pVQZ+3s3p3d

Method ER (eV) Γ (eV)
CAP-EA-EOM-CCSDa 2.508 0.364

aZuev et al. , J. Chem. Phys. 141, 024102 (2014)
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Perspectives

� Reference values for ER and Γ with CAP-CIPSI

� ηopt with CAP-CIPSI

� Complex-basis functions
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