Diving into the continuum with resonances

Yann Damour

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

June 26, 2024

Electronic spectrum of molecular systems:

Electronic spectrum of molecular systems:

Electronic spectrum of molecular systems:

Resonances

Metastable states embedded in the continuum that can decay by losing one electron. $ex: N_2^- \to N_2 + e^-$

Electronic spectrum of molecular systems:

Resonances

Metastable states embedded in the continuum that can decay by losing one electron. $ex: N_2^- \to N_2 + e^-$

Electronic spectrum of molecular systems:

Resonance

 $\hat{H}\Psi = E\Psi$ (need to account for the continuum)

Resonance

- $\hat{H}\Psi = E\Psi$ (need to account for the continuum)
- Complex-valued energy:

 \bullet 1/Γ is proportional to the resonance lifetime

Resonance

- $\hat{H}\Psi = E\Psi$ (need to account for the continuum)
- Complex-valued energy:

 \bullet 1/ Γ is proportional to the resonance lifetime Usual quantum chemistry methods are not made for resonances.

Bound state and resonance

Resonance

- $\hat{H}\Psi = E\Psi$ (need to account for the continuum)
- Complex-valued energy:

 \bullet 1/ Γ is proportional to the resonance lifetime Usual quantum chemistry methods are not made for resonances.

Bound state and resonance

$\sqrt{}$ 0.8 0.8 0.6 0.6 $|\Psi|^2$ 0.4 0.4 0.2 0.2 \mathbf{C} -15 -7.5 75 $\frac{1}{15}$ -15 -7.5 75 Ω Ω 15 x [a.u.] x fa.u.1 S. Klaiman and I. Gilary, in Advances in Quantum Chemistry, Vol. 63, 1–31 (2012)

Resonance

- $\hat{H}\Psi = E\Psi$ (need to account for the continuum)
- Complex-valued energy:

Energy	Resonance width
$E = E_R - i \Gamma/2$	
Resonance position	

 \bullet 1/Γ is proportional to the resonance lifetime Usual quantum chemistry methods are not made for resonances.

Bound state and resonance

$\sqrt{}$ 0.8 0.8 0.6 0.6 $|\Psi|^2$ 04 0.4 0.2 0.2 $\sqrt{2}$ -15 -75 75 -15 -7.5 75 Ω 15 Ω 15 x faul x fa.u.l S. Klaiman and I. Gilary, in Advances in Quantum Chemistry, Vol. 63, 1–31 (2012)

Solutions

- Scattering methods
	- Adaptation of quantum chemistry methods
		- Complex-absorbing potential, ...

Resonance

- $\hat{H}\Psi = E\Psi$ (need to account for the continuum)
- Complex-valued energy:

Energy	Resonance width
$E = E_R - i \Gamma/2$	
Resonance position	

• $1/\Gamma$ is proportional to the resonance lifetime Usual quantum chemistry methods are not made for resonances.

CAP

 \blacksquare To adapt quantum chemistry methods

CAP

- \blacksquare To adapt quantum chemistry methods
- Absorbs the tail of Ψ

CAP

 \blacksquare To adapt quantum chemistry methods **Absorbs the tail of** Ψ

> $\hat{H}(\eta) = \hat{T} + \hat{V} - i\eta \hat{W}, \quad \eta > 0$ CAP Hamiltonian Absorbing potential

CAP

N

 \blacksquare To adapt quantum chemistry methods **Absorbs the tail of** Ψ $\hat{H}(\eta) = \hat{T} + \hat{V} - i\eta \hat{W}, \quad \eta > 0$ CAP Hamiltonian Absorbing potential

 η'

CAP

 \blacksquare To adapt quantum chemistry methods Absorbs the tail of Ψ $\hat{H}(\eta) = \hat{T} + \hat{V} - i\eta \hat{W}, \quad \eta > 0$ CAP Hamiltonian Absorbing potential η' $< \eta''$

CAP

CAP

- \blacksquare To adapt quantum chemistry methods
- Absorbs the tail of Ψ

Complete basis set

$$
E_R
$$
, Γ from $E(\eta)$ when $\eta \to 0^+$

CAP

- \blacksquare To adapt quantum chemistry methods
- **Absorbs the tail of** Ψ

 $\hat{H}(\eta) = \hat{T} + \hat{V} - i\eta \hat{W}, \quad \eta > 0$ CAP Hamiltonian Absorbing potential

Complete basis set

 E_R , Γ from $E(\eta)$ when $\eta \to 0^+$

Finite basis set

 \Rightarrow Optimal value η_{opt}

$$
E_R = \text{Re}[E(\eta_{\text{opt}})] \quad \Gamma = -2 \, \text{Im}[E(\eta_{\text{opt}})]
$$

CAP-CIPSI

Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI)

- **Accurately approach the FCI energy of usual bound states**
- Required to benchmark methods
- CIPSI adaptation to do CAP-CIPSI
- Relatively small systems

CAP-CIPSI

Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI)

- **E** Accurately approach the FCI energy of usual bound states
- Required to benchmark methods
- CIPSI adaptation to do CAP-CIPSI
- \blacksquare Relatively small systems

CAP-CIPSI

- \blacksquare Iterative algorithm
- At each iteration:
	- The size of Ψ doubles
	- Energy $E(n)$
	- Second-order energy $E_{PT2}(\eta)$
- **At the FCI,** $E_{\text{PT2}}(\eta) = 0$

CAP-CIPSI

Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI)

- \blacksquare Accurately approach the FCI energy of usual bound states
- Required to benchmark methods
- CIPSI adaptation to do CAP-CIPSI
- \blacksquare Relatively small systems

CAP-CIPSI

- Iterative algorithm
- At each iteration:
	- The size of Ψ doubles
	- Energy $E(n)$
	- Second-order energy $E_{PT2}(\eta)$
- At the FCI, $E_{PT2}(\eta) = 0$

For a sufficiently large Ψ

- EFCI $(\eta) \approx E(\eta) + E_{\text{PT2}}(\eta)$
- Evolution of $E(\eta)$ as a function of $E_{\text{PT2}}(\eta)$ to estimate $E_{\text{FCI}}(\eta)$

N_2^-

CAP-EA-EOM-CCSD / aug-cc-pVTZ+3s3p3d^a

 \blacksquare η_{opt} from their work

^aZuev et al. , J. Chem. Phys. 141, 024102 (2014)

N_2^-

CAP-EA-EOM-CCSD / aug-cc-pVTZ+3s3p3d^a

 \blacksquare η_{opt} from their work

^aZuev et al. , J. Chem. Phys. 141, 024102 (2014)

N_2^-

CAP-EA-EOM-CCSD / aug-cc-pVTZ+3s3p3d^a

 \blacksquare η_{opt} from their work

^aZuev et al. , J. Chem. Phys. 141, 024102 (2014)

Results

N₂⁻/aug-cc-pVTZ+3s3p3d

^aBerman et al., Phys. Rev. A 28, 1363 (1983) b Zuev et al., J. Chem. Phys. 141, 024102 (2014)

Results

N₂⁻/aug-cc-pVTZ+3s3p3d

^aBerman et al., Phys. Rev. A 28, 1363 (1983) b Zuev et al., J. Chem. Phys. 141, 024102 (2014)

N₂⁻/aug-cc-pVQZ+3s3p3d Method E_R (eV) Γ (eV)
CAP-EA-EOM-CCSD^a 2.508 0.364 $CAP-EA-EOM-CCSD^a$ 2.508 ^aZuev et al. , J. Chem. Phys. 141, 024102 (2014)

Reference values for E_R and Γ with CAP-CIPSI \blacksquare η_{opt} with CAP-CIPSI

Complex-basis functions

Acknowledgments

Pierre-François Loos

Anthony Scemama

Fábris Kossoski

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No. 863481.